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Abstract: In this work, the problem of energy management strategies in hybrid diesel-electric
marine propulsion systems is investigated with the implementation of two types of Model Pre-
dictive Controllers. The system behavior is described by models based on system identification
as well as on first-principles. These models were used for the design of linear and adaptive pre-
dictive controllers respectively. The controllers were successfully tested at HIPPO-1 testbed, at
the Laboratory of Marine Engineering, evaluating diverse strategies for disturbance rejection,
system stability, and operation of the plant within desirable limits.
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1. INTRODUCTION

Strict emission regulations imposed by legislation au-
thorities (e.g. International Maritime Organization-IMO)
make marine engine manufacturers to look for new op-
portunities for emissions reduction. One promising tech-
nology for emissions reduction and fuel efficiency en-
hancement is hybridization, i.e. usage and coordination
of more than one energy sources used for propulsion.

This research work tackles the problem of energy man-
agement strategies (EMS) in hybrid diesel-electric ma-
rine propulsion systems, without any battery storage ca-
pacity. Such a system decides in real time the amount
of power delivered at each time constant by the energy
sources present in the experimental marine power train.
Objectives are to investigate a) the interaction between
the power sources and b) the feasibility of the hybrid
configuration to achieve reduced exhaust emissions and
improved fuel consumption during transient loading op-
eration. This could lead to diesel engine downsizing as is
the case in the ”modern” point of view in marine propul-
sion.

Usually, the engine control units contain a certain amount
of single closed-loops, with many look up tables in or-
der to achieve closed-loop control of the multi-parametric
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and strongly non-linear engine behavior, Ripaccioli et al.
[2009]. Today, a more sophisticated and complicated con-
trol method is needed: one that continuously decides the
operation point of the plant, while enforcing the operat-
ing constraints and optimizing the energy consumption,
in terms of fuel and electric energy consumption.

Several strategies for power management have been ap-
plied so far, including dynamic programming, stochas-
tic dynamic programming, equivalent fuel consumption
minimization and model predictive control (MPC). Of
the many advanced control design methodologies, MPC
seems to be the most capable to handle multi-variable
processes, satisfy constraints, deal with long time delays
and utilize plant response disturbance knowledge. MPC
has been used in a broad range of applications, such as
diesel engine control, del Re et al. [2009], Ortner and del
Re [2007], Adachi et al. [2009], Hybrid Electric Vehicles,
Ripaccioli et al. [2009], etc.

Usually the objective of the EMS is to minimize fuel con-
sumption. In the work presented here, the control prob-
lem is recast in an alternate way so as to track λ reference
while ensuring that certain constraints, like NOx and fuel
consumption are met.

2. SYSTEM DESCRIPTION AND MODELING

2.1 Experimental Facility

The hybrid propulsion powertrain HIPPO-1 test bed at
Laboratory of Marine Engineering, NTUA (LME) (seen
in Fig. 1) consists of an internal combustion engine (ICE)
in parallel connection to an electric machine (EM). As
such, the rotational speeds of ICE and EM are identical,
whereas the supplied torques add together. The desired



torque demand is applied through a water brake dy-
namometer.

Fig. 1. The hybrid diesel-electric test bed (HIPPO-1) at
LME.

The prime mover is a production-type, CATERPILLAR 6-
cyl. 10-liter, four-stroke, in-line marine diesel engine with
electronically controlled unit fuel injection, turbocharged,
with a rated power output of 425 kW at 2300 rpm. The
ICE is coupled to a standard 3-phase asynchronous in-
duction motor, with a rated power of 112 kW. The EM
is connected to a frequency inverter unit, enabling the
torque output regulation of the EM. The electrical power
needed to drive the EM is through the grid of the Labora-
tory; any produced electrical power can be dumped to a
pack of installed braking resistors. The dynamometer has
a load capacity of 1200 kW, with maximum speed at 4000
rpm. The cost for the hybridization is similar to the cost
of the ICE.

The whole test bed is controlled and monitored in real
time by a dSpace DS1103 controller board, programmed
under the Matlab/Simulink environment. Measurements
present in the test bed include: NOx/oxygen, soot emis-
sions (PM ) in terms of exhaust gas opacity, fuel mass
flow, turbocharger speed, torque and speed, intake mani-
fold pressure. The NOx/oxygen sensor is the automotive-
standard NGK SmartNOx wide range linear λ sensor in-
stalled 1 m downstream from the ICE turbine.

The control goal is to moderate the load of the diesel
engine by inserting power from the electric motor to
the system. This helps to reduce the engine emissions
(NOx, PM), especially during load transients, caused by
e.g., rough seas, variation in electricity demand on-board
or maneuvering. As engine emissions are not typically
measured in production engines, a standard variable has
to be determined that reflects emission level and can
be easily obtained. In case of combustion engines, this
variable is the λ value expressing the in cylinder air-
fuel ratio (AFR) over the stoichiometric AFR. Although
λ is not a measure of emissions itself, it is still a reliable
estimate of them, as illustrated in Guzzella and Onder
[2004].

2.2 Models from Identification

With the use of engine identification datasets multiple
kinds of models were identified, according to their input-
output attributes.

In the identification, the system parameters that individu-
ally affect the λ value and that are independent from each
other have been considered, so as to find the exact relation
between each parameter and the λ value during the mod-
eling procedure, Alberer and Anderson [2012]. Eventu-

ally three experiments were designed and performed, as
illustrated in Fig. 2: each time changing the total torque
demand (Load), the engine speed (SE) or the electric mo-
tor frequency inverter command (ucmd). For every param-
eter a Pseudo-Random Binary Sequence (PRBS) signal of
appropriate bias and amplitude was applied. Data from
each experiment was splitted for the identification and
validation process, as shown in vertical sessions in Fig.
2.

The identification data were merged in order to find the
model with the best average fit on the three data series.

Fig. 2. Identification and validation data sets.

For identification process algorithm N4SID was used in
order to find theAi,Bi, Ci terms of each model which de-
scribes the engine transient dynamics during step loading
as suggested for multi-variable systems, Ljung [2015].

A linear MISO model for λ output was identified, which
considers the command to the frequency inverter (ucmd)
and the deviation of engine speed from its reference
(dSE = SE − SERef ) as inputs, as described in (1).

Ẋ1 = A1X1 +B1 [ucmd dSE]
T

; λ = C1X1 (1)

The external load is not typically measured in marine
engines; thus it is not included in the above equation.
Speed deviation is also the disturbance which forces the
ECU of the engine to inject more or less fuel in order
to maintain the engine speed, accelerate or slow down,
according to the Speed Reference (SERef ).

Engine emissions and consumption models were also
modeled at the operating point of SE = 1600 rpm as
a function of intake manifold pressure (MAP ), SE and
λ. NOx and Fuel Oil Consumption (FOC) models de-
pending on the fundamental engine measurements were
extracted from the available measured data, as described
in (2), (3). As PM formation is complex, similar linear
models proved unsuccessful to describe its dynamic be-
havior; thus it was not considered in the present work.

Ẋ2 = A2X2 +B2 [λ MAP ]
T

; NOx = C2X2 (2)

Ẋ3 = A3X3 +B3 [MAP SE]
T

; FOC = C3X3 (3)
As the above models are depending on measurements
that are changing with the application of ucmd, an internal



MAP model, as described by (4) is needed in order to
reduce the prediction error of the MPC internal model (5).

Ẋ4 = A4X4 +B4 [ucmd SE]
T

; MAP = C4X4 (4)

Finally, the MISO models were combined to make a
MIMO model, as shown in (5) and used in MPC de-
sign. The fitting of the MIMO model to validation data
is shown in Fig. 3.
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Fig. 3. Fitting of MIMO model to the validation data.

2.3 First Principles Model

The first principles model of the diesel-electric power-
train was based on Heywood [1988]. As the dynamics
of the electric motor are significantly faster that those of
a diesel engine, the motor was modeled as a first-order
transfer function with a time constant. The overall hybrid
engine model is summarized in Samokhin and Zenger
[2014]. The outcome was a nonlinear model which was
validated with data from experiments at LME. As it is
computationally heavy for the optimizer when running
online, a linear approximation was used for the adaptive
predictive controller design. Fig. 4 shows the compari-
son of the measured and modeled λ values at constant
powertrain speed and load transients (constant torque
demand and electric motor dynamics are excited by the
PRBS signal).

2.4 Linearization

In order to improve the accuracy of the predictions,
the model is linearized online at each sampling interval
around the systems trajectory x(t), u(t). The linearization
of the nonlinear model is computed using the first order
Taylor series expansion and the so-called small perturba-
tion method. For better understanding of the system from
the control point of view, the physical equations are re-
written in terms of state variables, by introducing vectors
for the state x ∈ R5, input u ∈ R1 and measured outputs
y ∈ R1 as

Fig. 4. Fit of the first-principles model to the validation
data.

x =

[
MAP pexh Pcompr SE︸ ︷︷ ︸

ICE states

TEM︸ ︷︷ ︸
EM state

]T
u = ucmd → control input
y = λ→ measured output

(6)

3. CONTROL SYSTEM DESIGN

Two different cases were studied; standard linear con-
strained (MPC) and adaptive MPC (A-MPC) respectively.

3.1 MPC design

The λ value is controlled by changing the ucmd. Speed
deviation is treated as measured disturbance.

The MPC calculates the future control sequence that mini-
mizes a performance index related to the optimized goals
subject to the equations of dynamic models of the system
and the constraints, Maciejowski [2000]. Then it applies
the first element of the computed sequence. The process
is repeated at the next time step by moving the prediction
horizon one step forward.

For the solution of the optimization problem, quadratic
programming (QP) is used which tries to minimize the
cost function over the prediction horizon (7) by comput-
ing the Nu optimal sequence of the ucmd moves within
the Control Horizon (Nu), Bemporad et al. [2015].

min
(zk,ε)

p∑
i=1

{
wλ
sλ

[
λRef (k)− λ̂(k + i|k)

] }2

+

+

p−1∑
i=0

{
w∆u

su
∆u(k + i|k)

}2

+ ρεε
2
k ,

(7)

s.t. umin ≤ u(k + i|k) ≤ umax
NOx(k + i|k) ≤ NOxmax + εkVNOx
FOC(k + i|k) ≤ FOCmax + εkVFOC
εk ≥ 0

where k is the current control interval, zk is the optimiza-
tion process decision, given by zTk = [u(k|k)T u(k + 1|k)T

... u(k+p−1|k)T ]k, p is the number of prediction intervals,
λRef (k) describes the reference value for λ value at cur-
rent control interval, while λ̂(k+i|k) is the predicted value
of λ at ith prediction horizon step. u(k+i|k) is the optimal



sequence of command values predicted over the predic-
tion horizon given by zk function and ∆u = u(k + i|k) −
u(k+ i− 1|k) is the move of the command value between
the horizon intervals used for manipulated variable move
suppression respectively. The wj and sj parameters are
tuning weights of the controller and the scale factors, in
engineering units, of each jth variable accordingly. At
last, the slack variable εk at control interval k and the
constraint violation penalty weights ρε, VNOx, VFOC de-
termine the cost variation relevant to constrains violation.

The controller is hard constrained by the limits of the
actuator command (0 to 0.1 V ), which is the frequency
inverter. So ucmd ∈ [0, 0.1] V.

In constrained MPC scenario, as presented in Fig. 5, the
controller has to follow the dynamic λ set-point which
is derived from look-up tables, Topaloglou et al. [2016].
NOx emissions and FOC are also taken into account as
soft constraints that are applied in order to cope with en-
vironmental and operational limitations regarding these
system outputs. Soft constraints penalty is described with
the last term of the cost function and is applied when the
constrained output is above the hard limit. Sample time of
the MPC was set to 0.1 s; prediction and control horizon
were selected Np = 12 and Np = 2 steps respectively.

Fig. 5. Schematic diagram of HIPPO-1.

3.2 Adaptive MPC Design

The adaptive MPC (A-MPC) proposed in this work pro-
vides a possibility to improve λ reference (λRef ) tracking
by incorporating a disturbance model into the prediction
model. Various possibilities can be considered for dis-
turbance affecting the engine, however, marine engines
typically run at constant speed, and the load is vary-
ing. Therefore, inclusion of load disturbance model (i.e.,
d→ λ) is of interest. As load is not typically measured in
production engines, a variable correlating with the load
has to be chosen. Normally, the boost pressure or the
injection quantity can be used for the purpose of load
characterization. A disturbance model describing the re-
lation between the intake pressure pi and λ is used for the
adaptive controller configuration. The linearized physics-
based model was extended with the disturbance term

ẋ5×1(t) = A5×5(t)x5×1(t) + B5×2(t)u1×2(t)

y(t) = C1×5x5×1(t).
(8)

where u1×2(t) = [ucmd(t) d(t)] and d(t) is the intake
manifold pressure disturbance.

The A-MPC operating principle is briefly described as
follows. At first, the parameters of the linear model Jaco-
bians are updated with the most recent parameter values
at time instant k in order to increase the accuracy of the
model. A linear time-invariant (LTI) model is utilized,
which is discretized using zero-order hold and the fol-
lowing approximation

Ad = 15×5 + A∆t Bd = B∆t. (9)

Then, model matrices Ad, Bd and C are used to create the
linear prediction model to be used online. The parameters
of the prediction model are kept constant within the
prediction horizon Np.

Finally, the prediction model is written in a traditional
MPC manner with respect to the deviation variables
∆x(k) = x(k) − x(k − 1) and ∆u(k) which prevents the
optimizer from driving the input to zero. The steady-state
prediction errors are reduced by augmenting the original
model with the integrator.

4. EXPERIMENTAL RESULTS

Various experiments were conducted on the hybrid pro-
pulsion power train at LME, in order to evaluate the two
controllers.

The first set of experiments resembles a generator on-
board a ship, where the engine operates at constant speed
(1600 rpm) and with alternating load. In the second set
of experiments the engine simulates a propeller loading
operation, with alternating speed and torque.

The purpose of the proposed controllers is to track the λ
setpoint by engaging the EM. The reference λ values are
derived from static look-up tables (maps) that utilize the
measured intake manifold pressure and engine speed.

4.1 Step Loading

Linear Constrained MPC The conducted experiment in-
cluded step loading of powertrain from 200-500 Nm at
1600 rpm, Fig. 6. The measured λ can be seen for both
the conventional and hybrid setups. The MPC controller
displays good tracking performance of the reference λ,
during load changes and at steady state. The conven-
tional powertrain (i.e. without electric motor) operates
in lower λ values than the hybrid one, leading to higher
emissions. As soon as there is a rising edge in the applied
total torque the λ drops rapidly and an error is created
between the measured and reference λ values.

The controller causes the EM to produce torque which
is added to the torque produced by the ICE in order to
meet the total torque demand. The controller command
to the frequency inverter can be seen in Fig. 6. MPC
produces high command, in order to meet the imposed
limitations for NOx content and fuel consumption. Ac-
cording to the speed deviation disturbance, MPC regu-
lates the command value in order to stabilize the plant on
its reference and avoid overshoot and oscillation. MPC
is soft constrained, so as to force the controller provide



Fig. 6. Torque demand, λ values, controller command,
and speed disturbance, in step loading experiments
with MPC.

Fig. 7. Effect of the hybrid operation on NOx, exhaust
opacity, and fuel consumption, in step loading exper-
iments with MPC.

a stronger command during the transient phenomenon,
leading to a decrease of the emission pollutants.

In Fig. 7, the impact of the hybrid powertrain on the pro-
duced NOx, exhaust gas opacity and fuel consumption,
as compared to the conventional setup can be seen. Dur-
ing the load application the engine speed drops, causing
the increment in fuel command, which eventually causes
a NOx spike. Engine Speed variation (faster reaction than
λ) which is utilized as disturbance input in the MPC,
causes the controller to react and give the maximum
available command. However, due to the electric motor
torque limit as well as the dynamics of the fueling, the
NOx spike cannot be avoided at 12 s. (and at 57 s.).

It can be noted that with the hybrid setup, MPC reduces
NOx content by 40 % during steady state and by almost
10 % during the transient. Regarding the measured ex-
haust gas opacity, MPC behavior leads to a reduction of
25 % when compared to the conventional powertrain for
the same loading scenario. Finally, it can be seen that
the fuel consumption of the conventional powertrain is
around 20 kg/hr, while with MPC it is reduced by 40 %.

Adaptive MPC A-MPC design produces a smoother
command profile, as it can be seen in Fig. 8. The power
split, between the diesel engine and the electric motor
is shown in the first subplot of the figure, with red and
blue lines respectively. It is expected that A-MPC per-
forms better against MPC; In our case this is not clearly
shown, as at this loading case the linear model performs
adequately without the need for a non-linear approach
and A-MPC.

Fig. 8. Torque demand, λ value, and controller command,
in step loading experiments with A-MPC. Speed is
constant at 1600 rpm (not shown).

4.2 Propeller loading

The second type of testing was done when the engine
was operated according to the propeller curve law (i.e.
the power demand is a cubic function of the propeller
rotational speed). In this mode, speed and load varied
simultaneously, as shown in Fig. 9.

In propeller loading, the different capabilities of the two
controllers were exploited. At time = 20 s, a change in the
dynamics of both controllers can be observed. In the A-
MPC case the command reduces until a zero value, at the
end of the transient, while in the MPC case the command
continues to provide the required electric torque, so as
to keep the diesel engine operation within the maximum
NOx and fuel consumption limits.

Specifically in Fig. 10, where the corresponding values of
emission pollutants and fuel consumption are presented,
it can be noted that the MPC operates the plant success-
fully close to the imposed fuel consumption limit, man-
aging to keep the consumption under the maximum line,
while A-MPC, which is unconstrained, follows a different
control strategy.

However, the advantage of A-MPC is the fact that it
can make the prediction of the plant behavior according



Fig. 9. Torque and speed variation, λ values, and con-
troller command, in propeller loading experiments,
MPC vs A-MPC.

Fig. 10. Effect of the hybrid operation on NOx, exhaust
opacity, and fuel consumption, in propeller loading
experiments, MPC vs A-MPC..

to a model describing the current operating point of
the engine, which is a beneficial feature for a system
operating at different points from those of the nominal
model, as it happens with MPC.

5. CONCLUSIONS AND FURTHER WORK

In this work, the goal was to establish an energy manage-
ment strategy for a hybrid diesel-electric marine propul-
sion system. For this, predictive controllers with different
capabilities were designed and implemented: a standard
MPC and an adaptive MPC.

The modeling procedure for MPC was straight forward:
identification experiments provided models for controller
design. A-MPC model is based on first-principles; there-
fore it requires on-line linearization at each sampling in-
terval.

The performance of the two controllers was verified ex-
perimentally under realistic operating conditions on the
hybrid diesel-electric testbed at LME. Results showed the
efficient control of the plant during transient operation,
in terms of reduction of gas emissions and fuel consump-
tion improvement, while successfully handling input and
output constraints.

Although the two proposed controllers tracked the λ ref-
erence in a similar way, their commands were drastically
different, as MPC has to cope also with constraints.

Future work with the Explicit-MPC, where the QP prob-
lem is solved off-line and stored in look-up tables, will
allow for a different type of implementation of the power-
split control strategy.
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