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Engine knock margin estimation using in-cylinder
pressure measurements

Giulio Panzani, Fredrik Östman and Christopher H. Onder

Abstract—Engine knock is among the most relevant limiting
factors in the improvement of the operation of spark ignited
engines. Due to an abnormal combustion inside the cylinder
chamber, it can cause performance worsening or even serious
mechanical damage. Being the result of complex local chemical
phenomena, knock turns out to have a significant random
behaviour but the increasing availability of new on-board sensors
permits a deeper understanding of its mechanism. The aim of this
paper is to exploit in-cylinder pressure sensors to derive a knock
estimator, based on the logistic regression technique. Thanks to
the proposed approach it is possible to explicitly deal with knock
random variability and to define the so-called margin (or distance)
from the knocking condition, which has been recently proven to
be an effective concept for innovative knock control strategies. In
a model-based estimation fashion, two modelling approaches are
compared: one relies on well-known physical mechanisms while
the second exploits a principal component analysis to extract
relevant pressure information, thus reducing the identification
effort and improving the estimation performance.

Index Terms—Engine knock estimation, knock control, in-
cylinder pressure sensors, logistic regression, principal compo-
nent analysis

NOMENCLATURE

A. Acronyms

SI Spark ignition.
SA Spark advance.
MAPO Maximum Amplitude of Pressure Oscillations,

used to detect an engine knocking cycle.
KM Knock Margin: quantifies the distance of a consid-

ered cycle from the knocking conditions.
KOCA Knock Onset Crank Angle: crank angle value

where the knock event is detected.
IVC Intake Valve Closing.
PSO Particle Swarm Optimization.
AFR Air-to-Fuel Ratio.
PCA Principal Component Analysis.
SVD Singular Value Decomposition.
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B. Symbols

R2
L Pseudo-R2 index for knock estimation quality

evaluation. [-]
Ĉ Hosmer and Lemeshow index for knock estima-

tion quality evaluation. [-]
τ Self-ignition delay of unburned mixture. [s]
p In-cylinder pressure. [bar]
T In-cylinder temperature. [K]
Tim Intake manifold temperature. [K] or [C]
ω Engine speed. [rpm]
θ Crank angle. [deg]
λ Air-to-fuel ratio. [-]
C1, C2, C3 Arrhenius-like self-ignition model coefficients.

[-],[-],[-]
p̄1,2,...,i 1, 2, . . . ,i-th eigenpressure. [bar]
γ1,2,...,i 1, 2, . . . ,i-th eigenpressure coefficient used to de-

scribe the pressure trace of each engine cycle. [-]

C. Subscripts

k referred to the k-th engine cycle.
gb referred to the grey-box approach.
phy referred to the physical approach.

I. INTRODUCTION AND MOTIVATION

THE combustion process in SI engines is normally trig-
gered by the spark, whose timing is accurately defined in

order to achieve the desired engine performance. In particular
engine operating conditions, a too early spark timing may
cause an abrupt unburned mixture (end-gas) self-ignition,
due to the high temperature and pressure conditions reached
inside the cylinder chamber. This event is usually termed
knock, recalling the typical metallic sound caused by the
shock waves generated by the spontaneous detonation of the
air/fuel mixture. Such event limits the improvement of engine
performance, being responsible for some undesirable effects:
while it can cause serious cylinder damages, less dramatic
consequences are powertrain oscillations, a general decrease
of engine efficiency and an increase of pollutant emissions
[33]. An accurate control of SI timing has thus lately become
a crucial issue in the development of advanced combustion
control systems.

In the scientific literature specific attention has been paid to
the knock event due to its applicative relevance. The air/fuel
self ignition is the result of complex local phenomena in the
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cylinder chamber and as such shows significant experimental
random nature. For this reason, the first research efforts have
been devoted mainly to knock sensing and detection [32],
[16], with the development of techniques and technologies
that, flanked with efficient signal processing algorithms, could
be able to reliably discriminate knocking from not knocking
cycles (and, if possible, to quantify the detonation severity).

Knock control strategies developed consequently: the stan-
dard approach, which has been widely adopted in series
production, can be classified as event-based where, based on
simple [17] or more complex [30] rules, a single measured
knock occurrence causes a controller intervention. In order
to cope with knock random nature, stochastic knock control
strategies have been recently proposed. Their main idea is to
compare the statistic knock properties of the current engine op-
erating point (rather than considering each event individually)
with a target value and to adapt the control action accordingly.
In [24] the feedback statistic is established as a cumulative sum
of knocking events over a certain number of cycles, whereas in
[25] a likelihood ratio approach is employed. In [8] a nonlinear
transformation is used to shape the random distribution of the
knock events as a Gaussian variable whose mean and variance
are recursively estimated and used as feedback signals for the
knock control strategy. The advantage of stochastic approaches
is the fact that reckoning with the stochastic knock behaviour
leads to better mean engine running conditions and to less
cyclic variability. The drawback of the mentioned strategies
lays in the fact that the feedback statistic signal is built in
real-time, which requires several cycles. Given a single engine
cycle, out of the current operating point history, no statement
about the expected knock rate is possible.

The control strategy proposed by Lezius et al. in [18]
approaches the problem differently. It is based on the evidence
that cycles with a higher peak pressure are more likely to
knock. Engine knock is thus closed-loop regulated tracking a
peak pressure reference that is a compromise between engine
output torque and engine knock tendency. The distinguishing
feature of this approach is the fact that a margin (or distance)
from the knocking condition is defined for any single cycle. In
this specific case the cycle peak pressure is used to estimate
engine knock and its distance, computed as the error between
the measured and the target peak pressure value.

Proper models are required to design such a knock margin
estimator. In Lezius’ work, the model is implicitly enclosed
in the experimental evidence of a more frequent knock occur-
rence for higher peak pressure cycles. With respect to the real-
time stochastic approaches described previously, the additional
modelling effort compensates for the advantage of a cycle-to-
cycle knock margin evaluation. While the work of Lezius et al.
is focused primarily on the development of the control concept,
the knock estimator there employed has certain shortcomings:
• The proposed experimental correlation between knock

and cycle peak pressure is map-based; a parametric
estimator would be preferable to a non-parametric one.

• The knock margin estimator employed has no relationship
with any statistical characterization of knock; the target
peak pressure, thus, cannot be easily defined.

• The peak pressure correlation with knock occurrence,

even though valid and physically justified, is too restric-
tive; to provide a reliable model in all engine operating
conditions other factors which significantly affect knock
tendency (see [33]) should be taken into account.

Knock modelling is a widely discussed topic in literature,
where numerous solutions can be found. These can be sorted
in terms of complexity: starting from 3D CFD fluid dynamic
simulations coupled with detailed auto-ignition chemistry re-
actions, ending to 0D gas models where empirical formulations
based on Arrhenius functions provide a lumped parameter
description of the complex chemical reaction involved, see e.g.
[19], [7]. These solutions, even in their easiest formulations
are not suited for real-time applications due to their high
computational and/or tuning cost. Moreover, despite some
papers [28], [9] deal with the cycle-to-cycle combustion
variations (which represents only one contribution to knock
variability), traditional knock models are deterministic and are
thus generally used in engine design and sensitivity analysis
rather than for control.

Pushed by the promising results of the knock margin control
strategy, the goal of the present work is to overcome the
limitations listed, by proposing a model-based knock esti-
mator that can be used in engine control applications. The
technological feature at the basis of this study is the avail-
ability of in-cylinder pressure sensors measures. In-cylinder
pressure sensors provide a direct insight into the combustion
phenomena since they provide the measure of the pressure in
a specific location of the cylinder chamber. So far, they have
been employed in prototype or research activities but their
currently decreasing cost has made their use feasible even for
series production applications.

In the first part of the paper (Section II) an overview on
engine knock is given, introducing knock detection and knock
margin concepts based on in-cylinder pressure measurements.
The knock estimation approach, along with the knock margin
evaluation, is set in Section III. Knock random nature inclu-
sion in the modelling process is also addressed: eventually,
the knock occurrence probability is modelled as function
of engine measurements, using pattern recognition/machine
learning modelling techniques, which is one of the distin-
guishing feature of the proposed estimator. To account for
the various conditions of several engine operating points two
competing estimators are proposed in Section IV. On the one
hand a physics-based approach, inspired by knock modelling
literature, is used. On the other hand, a principal component
analysis (PCA) extracts the relevant information from engine
measurement data, with a genuine grey-box estimation fashion.
The competing approaches comparison is drawn in Section V,
based on experimental data collected in a wide range of engine
operating conditions. Some final remarks conclude the paper.

II. ENGINE KNOCK AND IN-CYLINDER PRESSURE SENSOR

A. Knock event and knock margin

A knock event is characterised by the abnormal com-
bustion of the unburned gas, that causes high temperatures,
high pressure peaks and an acoustic resonance within the
cylinder. Knock detection is based on such features and it
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has been investigated intensively in order to obtain a knock-
intensity/knock occurrence metric to be used for its control.
Indeed, in-cylinder pressure waves show a characteristic and
constant frequency that can be estimated with good approxi-
mation given the chamber geometric specifications, see [1];
a band-pass filtered pressure signal can be thus used to
detect knock and to quantify its intensity. As an example,
Figure 1 shows the pressure signals of two different cycles,
along with the corresponding band-pass filtered versions in the
lower panel. The maximum amplitude of pressure oscillation
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Fig. 1. Pressure and band-bass filtered signal for knock detection and knock
intensity definition.

(MAPO) index is commonly used to characterize knock inten-
sity. Based on this index, a knock/not-knock classification of
each k-th cycle can be established:

y(k) = 1 if MAPO(k) ≥ δ ⇔ knocking cycle
y(k) = 0 if MAPO(k) < δ ⇔ not-knocking cycle

,

(1)
where δ is a pre-determined threshold.

Although the in-cylinder pressure defines the current engine
knocking state, a still open issue, especially for not-knocking
situations, is the ability to evaluate how close is a current
operating condition to a knocking one. This is the core
of the so-called knock margin index which is designed to
quantify such a proximity condition. Knock margin based
control strategies exploit such information, trying to regulate
the engine operation on the verge of knocking conditions.

To provide a better understanding of the margin concept,
Figure 2 shows three different pairs of engine cycles, each
corresponding to a different value of spark advance (SA)
angle. As revealed by pressure oscillations the highest pressure
couple shows a clear knocking behaviour, whereas the lower
pressure traces a not-knocking one. The knock margin problem
occurs when the dashed lines are considered: both cycles are
not knocking but clearly the higher pressure cycle, indicated
by the lighter line, is closer to a knocking condition than the
other and, thus, it should be treated as a warning situation. The
plots in the right-hand panel show the corresponding band-pass
filtered pressure for the dashed cycles. Although this kind of
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Fig. 2. Knock margin concept illustrated via pressure profiles of various
operating points.

signal is efficiently employed for the detection of knock events,
it cannot provide any useful indication about the distance (or
margin) from the knocking conditions.

The knock margin estimation problem can be split into
two sub-problems: on the one side, defining which engine
conditions lead to a knocking cycle; on the other finding a
procedure to define the distance of the actual from the critical
conditions.

The availability of in-cylinder pressure allows an engine-
technology independent approach to the knock margin estima-
tion. Different engine technologies (e.g. engine turbocharger
presence, direct or port fuel injection, inter-cooler presence)
can be seen as a cause/factor that influence the combustion
process, tightly related to the knock events. However, the
direct access to the chamber pressure allows to gather all the
necessary information on the combustion event, overlooking
at the cause that has produced it.

B. A stochastic interpretation for knock and knock margin

The intrinsic random nature of knock is a widely accepted
fact, see e.g. [25], [8]. On one side, the cycle-to-cycle vari-
ability in the combustion causes pressure and temperature
variations inside the cylinder chamber, thus leading to different
cycle knocking behaviour. The upper panel of Figure 3 shows
an example of such variations, providing the pressure traces of
a steady-state operating point. If cycle-to-cycle variability were
the only factor responsible for the knock stochastic behaviour,
it would be possible to deterministically link any measured
pressure traces with a knocking behaviour. Unfortunately, this
is not the case. On the lower panel of Figure 3 the pressure
traces of two cycles extracted from the same engine operating
condition are shown. Although the pressure traces are identical
- at least the pressure differences are well below the variation
expected from cycle-to-cycle - knock occurs in one case,
whereas not in the other.

This peculiarity brings to re-interpret the knock margin
estimation: since there is no deterministic way to link engine
conditions to knock, a knock estimator cannot provide a
knock/not knock statement, but rather an indication about its
probability. Within the same statistical perspective, the knock
margin must be seen not as the distance from knock conditions,
but as the distance from an engine knock probability (defined
as critical for the considered application).
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Fig. 3. Cycle-to-cycle variability in a steady-state operating point (upper
panel) and example of significantly different knock behaviours for two similar
engine cycles (lower panel).

III. MODEL-BASED KNOCK MARGIN ESTIMATION

To solve the knock margin estimation problems, a model-
based approach is here presented: a model which describes the
relationship between the in-cylinder pressure and the cycle
knock probability is identified; a geometric interpretation of
such model makes the knock margin definition possible. Fed
by the data describing an engine cycle, the identified model
can be then used in real-time engine control applications to
estimate the knock probability and margin.

Finding proper correlations among engine measures and
engine knock is thus the key issue of the proposed estimator.
It is here assumed that there is no dynamic in the inquired
model, i.e. that knock of a given cycle depends only on
the current pressure trace, rather than on the previous cy-
cles history. Despite this assumption simplifies the modelling
problem reducing it to a static regression between the input
and the output variables, some issues must be still properly
addressed. Firstly the output measured variable y(k), which
has to be used to train and validate the model, is binary and not
continuous. Moreover, the engine knock model should allow
to easily define a procedure to compute the distance from
critical conditions. Finally as already recalled, a probabilistic
interpretation of the estimated margin is a desirable (if not
mandatory) feature.

In the following, a machine learning modelling approach is
presented which allows to efficiently provide a solution for the
above-mentioned points.

A. Logistic regression as modelling approach

Knock detection is the result of a classification process (1)
and as such, knock occurrence is naturally described by a
binary signal. Considering this aspect, it comes natural to pose
the knock modelling as a classification problem as well, i.e. to
define a procedure that, given a certain number of features de-
scribing an observed event, allows it to be assigned to a known
class. There exists a great variety of classification algorithms,
that can be sorted according to various characteristics. A good

review can be found in [13]. In the present work, the so-called
logistic regression [12] is used.

For each cycle, also called instance, there are q = 2
possible classes: knocking or not-knocking. An instance is
also described by n numerical attributes x1, x2, x3 . . . xn (that
somehow carry the in-cylinder pressure information), that can
be collected in the attribute or feature vector x. Thus, each
instance can be represented as a point in a n-dimensional
feature space and has associated a label q.

As some other (not all) classification techniques do, the lo-
gistic regression defines a hyper-surface which aims at the best
possible separation of instances belonging to different classes.
The resulting surface divides the feature hyper-space in two
regions, each referring to one of the possible classes. The
classification of a new instance is made by checking its related
point position with respect to the hyper-surface, which can
be interpreted as a way to describe all the critical conditions
which lead to knock. Considering this geometric interpretation
of the classification process, the general advantage of such an
idea is clear: it is indeed straightforward to introduce a margin
concept, defined as geometric distance of the instance point
from the classification hyper-surface.

The hyper-surface classification approach is shared by other
well known procedures, such as the Support Vector Machine
(SVM), Fischer Linear and the Quadratic discriminant classi-
fication. Among the mentioned alternatives, logistic regression
has been preferred because it permits to handle the statistical
nature of the phenomena easily, providing the necessary prob-
ability interpretation of the knock margin model. In fact, this
classification algorithms explicitly link the probability of the
two possible events to the attribute values x, using the logistic
function:

P (y = 1 | x) = π(x) =
e(α+βx)

1 + e(α+βx)

P (y = 0 | x) = 1− π(x) =
1

1 + e(α+βx)

. (2)

The scalar α and the vector β are the logistic model parame-
ters, that have to be estimated. Another appealing property of
the logistic regression is that, according to equation (2), the
log-odds Λ(x) is a linear function of the model parameters:

log Λ(x) = log

(
π(x)

1− π(x)

)
= α+ βx . (3)

This linear fashion of the logistic regression eases the interpre-
tation of modelling results and suggests its link to the linear
regression approach.
Recalling the classification geometric interpretation, the hyper-
surface marks a limit condition in which the classification
it is not possible. In probabilistic terms, this means that the
probability of two events is identical (π(x) = 1−π(x) = 0.5).
This situation, according to equation (3), leads to:

log Λ(x) = 0⇒ α+ βx = 0 .

Such equation completely describes the classification hyper-
surface as an hyper-plane (ε) in the feature space:

ε : α+ βx = 0 . (4)
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If the k-th cycle is represented as a point σk in the features
hyper-space (with coordinates xk), its margin is defined as the
euclidean distance between the point and the hyper-plane:

KMk = d (σk, ε) =
α+ βxk√

ββT
. (5)

Combining equation (2) and (5) it is possible to relate the
probability of the knock event to the measured margin:

P (y = 1 | KMk) =
eKMk

√
ββT

1 + eKMk

√
ββT

To successfully accomplish the modelling goal two oper-
ations are required. The first is the correct choice of the
attributes x, which will be addressed in the next Section. Once
the features have been selected, a tuning procedure for the
model parameters α and β is needed. Despite its appealing
linear regression interpretation, practically, the procedure to
identify such parameters is not based on a least-square fitting
of the log-odds, but rather on the conditional likelihood L
maximization defined as:

Lα,β = P (y1, . . . , yn | x1, . . . ,xn) =

n∏
k=1

e(α+βxk)yk

1 + e(α+βxk)
,

which is a nonlinear function of α and β. Several iterative
methods have been proposed to solve this problem and ready-
to-use implementations of such algorithms are the standard
equipment of statistical data analysis software; in this context
the Matlab glmfit function has been exploited.

Figure 4 provides an example of the application of the
proposed modelling approach to a small subset of data. These
data are taken in an operating point with constant speed,
inlet air temperature and air-to-fuel ratio. In order to induce
different knock levels the spark advance is changed from 20 to
35 degrees before top dead centre. As an example, following
the suggestion of Lezius et alt. [18], the maximum cycle
pressure has been used as cycle attribute x(k) = pmax(k).
The pressure values have been grouped in j = 20 intervals.
In the upper panel, within each group, both event frequencies

0

50

100

C
la

ss
 r

el
at

iv
e 

fr
eq

ue
nc

y 
[%

]

 

 

NO knock
Knock

65 70 75 80 85 90

0

50

100

Max. cycle pressure [bar]

K
no

ck
pr

ob
ab

ili
ty

 [%
]

 

 

Model
Experimental

Fig. 4. Example of logistic regression modelling: the upper plot shows the
relative knock/not knock event frequency within each peak pressure group;
the lower plot shows the modelled and the experimental knock probability
P (y = 1).

(expressed in percentage) are shown:

F1,j =
N1,j

Ntot,j
· 100 and F0,j =

N0,j

Ntot,j
· 100 , (6)

where N1,j and N0,j are, respectively, the number of observed
knocking and not-knocking cycles over the total Ntot,j number
laying in the j-th group. In the lower panel the modelled (2)
and experimental probability (F1,j , according to the frequentist
probability interpretation) are shown.
Since in the proposed case the feature space is mono-
dimensional, the classification hyper-plane becomes the scalar
value x̄, defined by:

x̄ : log Λ(x̄) = 0 ≈ x̄ = 82.5 [bar] .

In order to focus on the knock estimation, the cycle-domain
modelling results are reported in Figure 5, for the same
dataset previously considered. In the upper (first) panel the
applied spark advance angle is shown: each operating point is
characterized by a constant SA value. In the second plot the
value of the maximum cycle pressure is reported, along with
the classification threshold x̄; the knock margin is proportional
to the quantity x(k)−x̄. In the same plot red crosses and green
dots are used to mark if, for the corresponding cycle, knock
has been measured (y(k) = 1) or not (y(k) = 0); finally note
that, according to the classification rule:

ŷ(k) = 1 if KM(k) ≥ 0

ŷ(k) = 0 if KM(k) < 0
,

the expected model output ŷ can be computed: thus for each
point that lies above the threshold knock is expected; the
opposite for all the points below the black dashed line. In the
bottom panel the estimated model probability (2) is reported
and, along with it, the measured knock probability, computed
as (6) where the index j refers to each constant SA operating
point.
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B. Assessment of estimation quality

Figure 5 allows one to stress another peculiarity of the
proposed knock margin estimation approach. Indeed, unlike
the normal regression problems, since the measured variable
is dichotomous it is not convenient to define an error-like
quantity to evaluate the estimation performances. The quality
of the knock margin estimation should be evaluated comparing
model output in terms of estimated probability: intuitively, a
possibility is to compare the measured and the expected knock
probability, as shown in the lower plot.

Traditionally, see [12], [22], two approaches have been used
to assess model quality. In this work, both approaches are used
to ensure the most comprehensive evaluation of the modelling
performance.

On the one hand pseudo-R2 indexes have been proposed,
that describe the predicting power of the identified model
compared to the predicting power of a null model i.e. when
only the intercept (α) is present. The other approach considers
the calibration of the model, that is to say, it judges the agree-
ment between observed and expected outcomes. In this work,
both approaches are used to ensure the most comprehensive
evaluation of the estimation performance.

Among the several pseudo-R2 indexes (see [22] for a
detailed comparison) the one employed here is the R2

L index
described in [21]:

R2
L = 1−

logLM
logL0

, (7)

where LM is the likelihood of the identified model, whereas
L0 is the likelihood of the null model. Conceptually similar
to the R2 index of linear regression, its appeal is due to the
direct relationship with the quantity i.e. the likelihood that is
used to identify the model parameters.

In order to evaluate the agreement between the observed
and estimated data, various approaches can be followed, see
[11]. In the present work the method proposed by Hosmer and
Lemeshow [12] is used. Groups are built first, such that the
same number of observed events are present in each, followed
by the computation of a Pearson’s residual based statistic:

Ĉ =

ng∑
n=1

(
(O1 − E1)

2

E1
+

(O0 − E0)
2

E0

)
. (8)

Equation (8) can be easily interpreted as a sum-of-error like
index, where for each class (0: not-knocking, 1: knocking)
the error is computed as difference between the expected
(E) and the observed (O) event occurrences normalized with
respect to the expected frequencies. Regarding the number of
groups in which the attributes are divided, a fixed value of
ng = 20 groups is used from now on, mainly for graphical
yield. However, the results of the following sections, based
on a relative comparison of fit indexes, have been tested with
different groupings leading to the same conclusions.

IV. KNOCK MARGIN MODELS

In the previous Section the model-based estimation ap-
proach has been set. However a still open point is the choice
of the model input, i.e. the attributes that are the representative

features of an engine cycle is discussed. Two main problems
arise. First of all, all or most of the knock influencing factors
have to be included directly or indirectly in the model. The
next question is how the pressure trace should be treated:
Figure 2 shows how pressure profiles carry the knock margin
information but, given the complex shape of a pressure profile,
the way in which such information is to be extracted from the
pressure profile is not straightforward. In the following, two
competing approaches are presented.

A. Physical approach

The most straightforward way to build knock representative
features is based on earlier studies on physical knock mecha-
nisms. This approach is labelled here as physical.

Given in-cylinder conditions a well-known way to model
knock occurrence is the so-called knock integral first intro-
duced by Livengood and Wu [20], which is widely employed
in engine knock research. The idea is to lump all the complex
chemical reactions that eventually lead to end-gas self-ignition
into a single Arrhenius-like formulation:

τ = C1p
C2e

C3
T , (9)

where τ is the so-called self-ignition time, which is the time
required by the mixture to self-ignite at certain pressure
and temperature conditions. Equation (9) represents a semi-
physical chemical model since it keeps the physical structure
of the reactions in the nonlinear combination of pressure p
and temperature T , whereas its coefficients are determined
experimentally. To cope with the non-constant pressure and
temperature conditions in the combustion chamber during the
evolution of the cycle, an integral formulation of that equation
has been proposed. Expressed in the crank angle domain, it
states that knock occurs when:

1

6ω

∫ θkn

θ0

1

τ(θ)
dθ = 1→ 1

6ωC1

∫ θkn

θ0

p(θ)−C2e−
C3
T (θ) dθ = 1 ,

(10)
where θ0 is the angle when the reaction starts (usually the
intake valve closing time, IVC), θkn is the self-ignition angle
and ω is the engine speed in rpm

Given the in-cylinder conditions of a k-th cycle pk(θ) and
Tk(θ), with equation (10) the expected self-ignition angle
θ̂kn,k can be computed. Intuitively, if the predicted knock
angle oversteps the end-of-combustion angle no knock can
occur because all the end-gas has been burnt. The knock
margin thus could be defined as the distance from the end-
of-combustion angle. Several researchers have generalized this
concept defining a knock margin as the distance from a so-
called critical angle θc:

KMphy
k = θ̂kn,k − θc . (11)

There is no unique definition for the critical angle; usually
each author relates it to a specific experimental evidence, see
e.g. [5], [4]. In this work the critical angle is chosen to be the
one maximizing the knock margin estimation performance.

The peculiar feature of the physics-based approach is
the fact that the knock margin (11) is not related to any
“geometric distance” concept, since it is based merely on
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physical considerations. In this perspective, the logistic
regression downgrades to the single-input case, i.e. the
classification hyper-plane becomes a scalar threshold which
defines the equal probability of knock/not knock events.
However, the logistic regression is still essential in order to
assign the corresponding knock probability to each knock
margin value.

To apply the proposed approach, the temperature T (θ) of the
end-gas is needed, along with suitable values of the parameters
C1, C2 and C3 of the self-ignition time formula (9). Although
measurement of the required temperature is not available, a
well established procedure to estimate its value can be used
(see e.g. [10]).

To estimate the parameters in equation (9), an optimization
problem has been solved; this approach has already been
proposed in literature, see [4], [26]. The values of C1, C2 and
C3 are found by minimizing the following cost function:

J (C1, C2, C3) =

nc∑
j=1

(
1− 1

6ωjC1

∫ θkn,j

θ0,j

pj(θ)
−C2e

− C3
Tj(θ) dθ

)2

,

where nc is the number of cycles considered. Since the
experimental knock onset crank angle θkn,j is required, only
measured knocking cycles are used for the optimization prob-
lem.

The nonlinear optimization problem is very sensitive to
initial conditions. Thus it has been solved using a brute force
Particle Swarm Optimization (PSO) algorithm available for
Matlab [3]. The resulting values of the coefficients are listed
in Table I, along with other values that can be found in
literature. Whereas there is a general agreement about the

TABLE I
COMPARISON OF SELF-IGNITION MODEL (9) COEFFICIENT VALUES.

C1 C2 C3

present work 0.344 –1.84 1524
Elmqvist et al. [4] 0.021 –1.7 3800
Douaud and Eyzat [2] 0.018 –1.7 3800

second coefficient C2, different values result for C1 and C3.
Figure 6 shows the cost function J for different values of C1

and C3, while keeping C2 constant. Clearly there is no well-
defined unique minimum. This explains why combinations of
C1 and C3 can yield a satisfactory performance and why the
choice of initial conditions is crucial if standard gradient-based
optimization algorithms are used in this context. An identical
behaviour has already been pointed out in [4], which is the
only literature paper that clearly states the difficulty in finding
self-ignition parameters.

Despite the apparent over-parametrization of the optimiza-
tion problem the resulting choice of coefficients yields a
satisfactory knock modelling performance, showing a good
agreement between the measured and the estimated knock
onset crank angles (KOCA). Figure 7 shows the KOCA
estimation error for the training and validation set of knocking

Fig. 6. Cost function (IV-A) for different values of C1 and C3.

cycles, with datasets that have been generated by randomly
grouping knocking cycles for all the engine operating points
considered.
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Fig. 7. Comparison between measured and estimated KOCA with the knock
integral model (10). The upper panel shows training data results; the lower
panel the validation performance.

B. Grey-box approach

The alternative solution for knock modelling exploits the
multi-variable capability of the logistic regression algorithm.
Instead of combining different measurements within the
physics-based structure (10) and directly building the knock
margin, more attributes are used to identify a multi-variable
logistic regression model. Since the model is built combining
physically relevant variables within a non-physical - even
though pre-assigned - linear structure, this procedure here is
called grey-box.

The choice of the attributes, i.e. the values and measure-
ments that represent each engine cycle, becomes the crucial
point of the proposed approach. As suggested by physical prin-
ciples at least three quantities are necessary, related to engine
speed, in-cylinder pressure and temperature, respectively.

Engine speed is an available signal, thus its average value
during each cycle ω̄ can be directly used as an attribute.

To include in-cylinder temperature information the follow-
ing facts have to be considered. First, as discussed in [10],
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only high pressures and temperatures contribute to the self
ignition of the end-gas; thus, only the combustion phase can
be considered relevant. Assuming the adiabatic compression
of the end-gas during combustion, its temperature evolution
can be computed using the following expression:

T (θ) = T (θIV C)

(
P (θ)

P (θIV C)

)1− 1
γ

, θ > θSI .

The inspection of the proposed equation suggests that the in-
cylinder temperature information is fully known if the pressure
profile and the temperature of the mixture at intake valve
closing (IV C) angle are available. The variable TIV C is well
described by the intake manifold temperature Tim that can be
measured by a series production sensor. Thus, this value has
been selected as the second feature describing an engine cycle.

To carry the required pressure information, the in-cylinder
pressure signal is employed. This sensor measures the pressure
profile with a crank angle resolution of 0.75, consisting of
360 · 0.75 = 480 relevant points for each cycle (in a four-
stroke engine each cycle covers 720 degrees, only 360 of
which are of interest for the combustion). In principle, all
of these 480 variables could be used as features representing
pressure. However, due to the fact that in model identification
the variance of the estimation strongly depends on the number
of inputs [15], the proposed approach is poorly reliable in
practice. This is a common problem when dealing with mod-
elling internal combustion engines. To cope with it in literature
some solutions can be found. Among the simplest, one option
is to synthesize the entire pressure profile with some selected
values, such as the maximum pressure value and its crank
angle location or the maximum pressure gradient and the mean
effective pressure. However, such an approach is limited by
the excessive loss of information occurring when the pressure
profile is described simply with these values, that are too local
or too mean.

To overcome this limitation a Principal Component Anal-
ysis (PCA), also known as Karhunen-Love transform [14],
approach is adopted in this paper. This solution has shown
promising results when dealing with control and estimation
issues of internal combustion engines (see [23], [6], [31]).
PCA aims at dimensionality reduction or feature extraction.
Recalling, as an example, the upper panel of Figure 3 one can
realize that although different, all the pressure traces clearly
show an underlying common trend (the bell shape). In this
context the PCA approach aims at extracting such common
information, thus possibly reducing the number of parameters
needed to represent each pressure profile.

In order to do so, the pressure matrix P480xN (where N is the
number of engine cycles considered, N > 480) that collects
all the pressure profiles is decomposed using the singular value
decomposition (SVD):

P = UΣV T ,

where U and V are orthogonal matrices, while Σ is a diagonal
matrix with the non-zero terms σi, i = 1, . . . , 480. The matrix
U contains 480 orthogonal vectors of length 480, the so-called
eigenpressures p̄i(θ) where the θ dependency has been added

to stress the crank-angle domain of the pressure profile. A
given measured pressure trace pk(θ) can be thus expressed as
a linear combination of the first 480 eigenpressures:

pk(θ) =

m∑
i=1

γi,kp̄i(θ), m = 1, . . . , 480 , (12)

where the coefficients γi,k are defined as the projection of
the pressure profile on the respective i-th eigenpressure. Such
projection is computed by applying the inner product:

γi,k =< pk(θ), p̄i(θ) > .

Equation (12) states that a given pressure profile (consisting
of 480 variables) can be described with m ≤ 480 coefficients.
The more features are used, the smaller the error between
the measured and the reconstructed profile is, hence the loss
of information in representing the measured profile with the
corresponding γi,k, i = 1, . . . ,m coefficients. Considering the
nature of SVD, the singular values are sorted in a decreasing
order in the matrix Σ according to the relevance of each
eigenpressure in the pressure profile reconstruction. To obtain
a satisfactory reconstruction only the first 3 eigenpressures are
needed: the left panel of Figure 8 shows the first 5 singular
values, evidencing this fact. Figure 9 shows the comparison
between a measured and its reconstructed profile using the first
3 eigenpressures that are shown in the right panel of Figure
8; the lower plot shows the reconstruction error.
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Fig. 8. Singular values (left panel) and first 3 corresponding eigenpressures
(right panel).

The first 3 PCA coefficients γ1, γ2, γ3 are thus considered
as representative of a generic pressure profile and are used as
features to carry the in-cylinder pressure information needed
for the logistic regression model. The benefits of the PCA
approach can be appreciated noting the significant reduction
of features used to describe the in-cylinder pressure profile,
namely from 480 to 3.

In summary, the k-th engine cycle is defined by the follow-
ing set of attributes xgb

k :

xgb
k =

[
γ1,k γ2,k γ3,k Tim,k ω̄k

]
. (13)

Once the logistic model coefficients αgb and βgb are identified,
the knock margin is defined as the euclidean distance defined
in (5).

KMgb
k = d

(
σgbk , εgb

)
. (14)
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Fig. 9. Comparison between measured and reconstructed pressure using the
first 3 features (upper plot). Pressure error in the lower plot.

V. EXPERIMENTAL RESULTS

A. Experimental set-up

Measurements were conducted on a fully equipped test
bench consisting of an SI engine and an electric brake. The
0.75 litres engine features 2 parallel twin cylinders, a single
stage turbocharger and port fuel injection for a maximum
power of 61 kW at 6000 rpm and a maximum torque of 131Nm
at 3000 rpm. The electric brake has been used in the speed-
control mode, which permits the engine to be tested at different
engine speed. Each component has a devoted dSpace R© rapid
prototyping system that handles the engine and brake control
and the logging tasks. Moreover, in order to sample the in-
cylinder signals at the adequate rate, a Teledyne LeCroy R©

WaveSurfer oscilloscope capable of a sampling frequency of
up to 2.5GHz has been used.

B. Results

The comparison among different knock models is based
on data collected from different operating points where the
engine runs in a standard way, which means that the injection
control is active, aiming at regulating the air-to-fuel ratio (λ)
to the stoichiometric value (λ = 1). It is well known (e.g.
[33]) that the air-to-fuel ratio is another factor that mainly
influences knock. Given the presence of a λ controller, which
keeps its value constant, such variable has not been included
in the set of those used in the estimation. However, if needed,
the estimators comparison could be easily extended in the
following way: for the physical-based model the self-ignition
delay (9) could be modified according to the expressions
suggested by some authors, such as in [27], [29]. On the other
side, the average-cycle measured AFR value could be simply
added to the features vector (13).

To check the influence of various factors on knock tendency,
experimental tests have been carried out as follows:

1) Different speeds, ranging from 1800 to 3000 rpm have
been tested.

2) For each engine speed, the engine load has been set to
produce a torque of around 100 Nm; the spark was then
advanced w.r.t. the optimal operating point value - as
shown in Figure 5 - thus reducing the load. Tests were
interrupted when the conditions became too extreme, e.g.

warning level of knock rate or intensity were reached, or
the pressure peaks became too high.

3) For the same engine speed, the intake manifold tempera-
ture was increased. To do so the inter-cooler cooling water
flow was reduced, since the ambient cell temperature
could not be changed. Due to the higher temperatures,
the 100Nm engine output torque could not be always
reached.

4) For each operating point described, steady-state condi-
tions were waited before data acquisition begun and an
average of 375 cycles were collected.

Note that the experimental main focus was placed on the most
significant engine knocking operating region: for this reason
very high speed and low load conditions were not explored.
Given the inner linearity hypothesis of the PCA, limiting
the engine operations to the edge-knocking conditions helps
to provide better estimation results. Nevertheless, as will be
shown in the following, the explored area features a ratio of
knocking cycles from 0 to almost 50% which, in a knocking
control perspective is a more than adequate range (usually the
desired knock ratio is kept below 5%, see e.g. [25]).

Knock margin estimation performances with the physical
and grey-box approaches are shown in Figure 10. To allow an
easier quantitative comparison, the respecting knock margins
(11) and (14) have been normalized. The upper panels show
the relative event frequencies as a function of the knock margin
value for each model. Generally, an increasing knock tendency
can be observed for both approaches; however for the grey-box
model the increase of knock tendency with the knock margin
is more relevant and it is monotonic.

The left lower plots show the KM values as function
of the engine cycles: for the sake of clarity, knocking and
not knocking events have been marked with different colours
(red crosses and green dots, respectively). With the physical
approach knocking and not knocking cycles are characterized
by similar margin values; opposite, the grey-box yields a
clearer distinction between the two situations. In the same
plots, with the grey-box approach a certain grouping of KM
values can be noticed. Considering the type of tests that where
performed (in each OP the spark advance was changed to
achieve an higher knock rate until a limit value was reached)
it is easy to understand that each group refer to a specific
OP. Looking at the physics-based model such data grouping
vanishes, highlighting the poor discriminative power and the
loss of information in using such approach to estimate the
knock rate.

Finally, the right lower plots depict the observed and the
estimated knock probabilities, as a function of the knock
margin value. With the fit quality indexes reported in Table
II a quantitative comparison between the two approaches can
be set. If one considers the Ĉ index, there is not much
difference between the grey-box and the physics-based esti-
mation (though the lower value of Ĉ of the former indicates
a slightly better agreement between the observed and the
estimated probabilities). However the most significant differ-
ence is carried by the R2

L index, which is significantly higher
for the grey-box case. This means that the KM computed
with such method carries much more information about the
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Fig. 10. Knock margin models comparison: left plot shows the physics-based knock margin performance. On the right side the performance of the gray-box
knock margin model are presented.

knock rate than with the physics-based. Looking at the right
lower plots this fact is shown by the steeper change of
knock probability - w.r.t the knock margin - achieved with
the grey-box estimation approach. The worse performance of

TABLE II
MODELS PERFORMANCE COMPARISON.

Index R2
L Ĉ

Physic-based 0.025 120.8
grey-box 0.23 112.3

the physics-based model can be explained noticing that in the
identification stage only part of the knock information was
used. Indeed, for the physical approach the definition of the
knock margin requires the identification of the KOCA model
(10), which uses only knocking cycles (the only ones for which
an experimental KOCA can be defined). In this perspective,
all the information provided by the not-knocking cycles is
ignored. In contrast, the grey-box model aims at the best
possible classification performance and thus it equally exploits
the information carried by experimental data, both knocking
and not-knocking cycles.

VI. CONCLUSION

The knock margin control strategy is a promising approach
to enhance the performance of knock control algorithms.
Given measured values of an engine cycle, the knock margin
quantifies the distance from a knocking conditions. In the
present work, thanks to the availability of in-cylinder pres-
sure sensors, the knock margin concept has been developed
with a systematic approach. Its effectiveness is validated by
experimental data results.

In the first part of the paper, the model-based knock margin
estimator is set. A logistic-regression model proves useful
for two reasons: on the one side its geometrical interpreta-
tion helps a handy definition of the knock margin concept,
computed as geometric distance between point an plane in an

hyper-space. On the other its useful statistical interpretation
allows knock margin values to be related to the control target
knock probability.

In the second part of the work two competing approaches
to build proper regressors have been presented. The first
one combines the engine measures - in-cylinder pressure,
temperature and engine speed - in a non-linear physical-driven
way, in order to derive a knock margin variable which is
then used to model knock probability. The second approach,
called grey-box, exploits the multivariate capability of the
logistic regression algorithm combining various inputs, that
represent the information carried by measured signals, to
model knock probability. In order to keep the size of the
engine cycle feature array as small as possible, aiming at
the best modelling performance, physical considerations and
a principal component analysis (PCA) have been employed.

Experimental results show that the grey-box approach leads
to a better estimation performance, using only three pressure
features, the intake manifold temperature and engine speed
measures.

Engine knock can be caused by many sources and some of
them could not be easily measured e.g. fuel quality, hotspots.
A possible improvement of the proposed approach would deal
with the development of an adaptive extension of the knock
margin estimator, capable of adapting its parameters w.r.t.
the measured knock rate, in order to cope with changes in
those unmeasured factor. It should be noted that this issue
affects both the physical and the grey-box approaches; besides
its better estimation performances, given its easier structure
and procedure for parameter estimation, the grey-box model
is likely the better candidate for the development of such
extension.

Given the promising estimation results, future work will also
deal with the use of the knock margin in closed loop knock
control strategies.

REFERENCES

[1] A. di Gaeta, V. Giglio, G. Police, and N. Rispoli, “Modeling of in-
cylinder pressure oscillations under knocking conditions: A general



11

approach based on the damped wave equation,” Fuel, vol. 104, pp. 230–
243, 2013.

[2] A. M. Douaud and P. Eyzat, “Four-Octane-Number Method for Pre-
dicting the Anti-Knock Behavior of Fuels and Engines,” SAE Technical
Paper series, no. 780080, 1978.

[3] S. Ebbesen, P. Kiwitz, and L. Guzzella, “A generic particle swarm
optimization Matlab function,” in American Control Conference (ACC),
Montreal, 2012, pp. 1519–1524.

[4] C. Elmqvist, F. Lindström, H.-E. Å ngström, B. Grandin, and
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