Objectives

Develop <u>methods</u>, <u>systems</u> and <u>processes</u>
allowing a continuous <u>optimized</u>
<u>performance</u> of the power plant <u>throughout</u>
its lifetime

How

- Optimized control methods
- Adaptive lubrication system

Expected Results

- Technology demonstrators at TRL 6
- Max 5% divergence of any performance parameter from "as-new" state
- Advanved lubrication control system
- Optimized lube oil feed rates
- 10% lube oil consumption reduction

WP Leader: Jonatan Rösgren WP Deputy: Matthias Stark

Structure

Building blocks for lifetime performance

Engine control optimization Engine offline parametrization tool LIFETIME PERFORMANCE CONTROL Development of an advanced real Development of a fully flexible lube time tribosystem performance oil injection system monitoring system

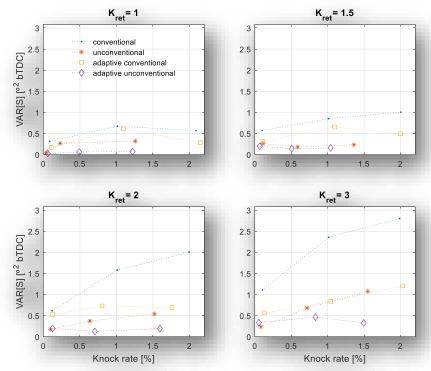
Structure: Subprojects, Activities: 5.1, 5.2

Sub-project 5.1: Engine control optimization

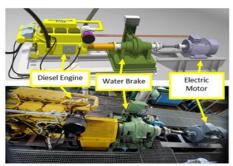
 Optimized control study, algorithm development, simulation, testing

Sub-project 5.2: Offline engine control parametrization tool

 Parametrization study, concept, prototype tool development, prototyping, testing


Progress (5.1, 5.2)

5.1 Engine control optimization

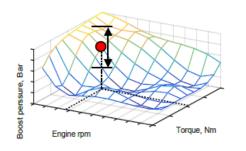

- Hercules C: stochastic knock margin identification, adaptive controllers development
- Hercules 2: knock & optimal control control strategies and methods including measurement chain accuracy

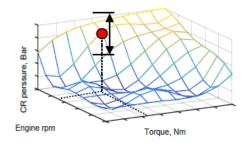
Progress:

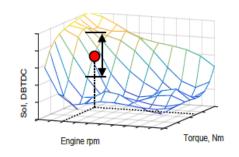
- Adaptive knock control strategies strategy development and testing ongoing
- Measurement chain accuracy study
- Engine laboratory setup (Vaasa)
- Hybrid engine control lambda regulation development

Spark timing variance. Comparison of the adaptive strategies.

Hybrid engine setup


Progress (5.1, 5.2)

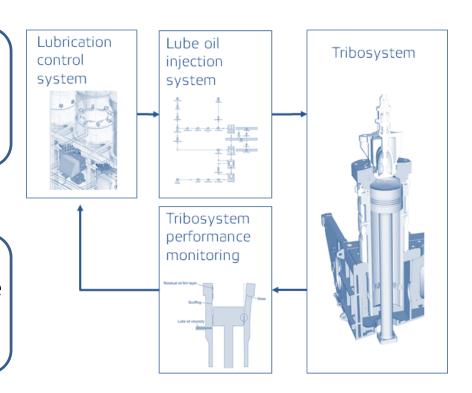

5.2 Offline engine control parametrization tool


- Hercules C: focusing on adaptive controllers (PID)
- Hercules 2: focus on reference maps.
- Reference maps big affect on engine characteristics

Progress:

- Rapid prototyping systems introduction ongoing (Aalto & Wärtsilä)
- Design of Experiments (DoE) algorithm development & simulation ongoing
- Screening experiments with 2³ factorial design: construction of linear regression model
- Engine testing to be initiated in October 2016.

Structure: Subprojects, Activities


DWP Leader: Matthias Stark

Sub-project 5.3:

Development and simulation of an adaptive lubrication system

Sub-project 5.4:

Development of an advanced real time tribosystem performance monitoring system

Objectives / Expected Results

<u>Tribosystem monitoring technology</u> <u>development</u>

Identification and development of suitable sensor technologies including prototype testing and initial validation

Flexible lubrication system development

Development and validation of substantially modified lubrication system components

Adaptive lubrication system development

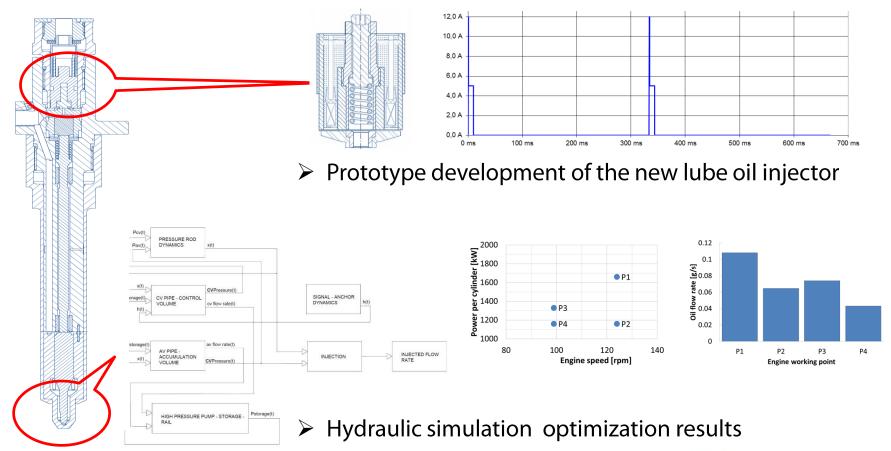
<u>Tribo performance simulation tool</u> <u>developmet</u>

Development of a simulation model to predict tribosystem performance

Testing and validation

Initial validation and demonstration of the lubrication system on specialized test rigs and a full scale engine test

Partners:



Sub-project 5.3: Development and simulation of a fully flexible lubrication system

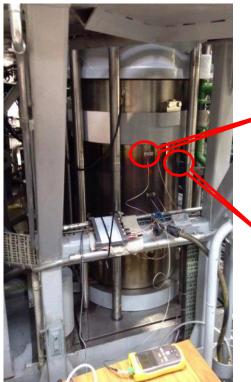
Sub-project 5.3: Development and validation of a fully flexible lubrication system

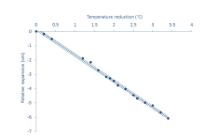
Experimental setup

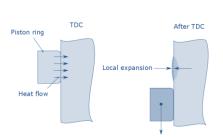
Engine Load 25 50 75 100 Load [%] Lube Oil Spray Pattern f(p,T,v)

Simulation of engine load conditions

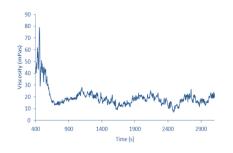
Software and hardware modifications


Pulse jet lubrication system testing





Sub-project 5.4: Development of an advanced real time tribosystem performance monitoring system



In-line scuffing indicator prototype testing

In-line viscosity indicator prototype testing

