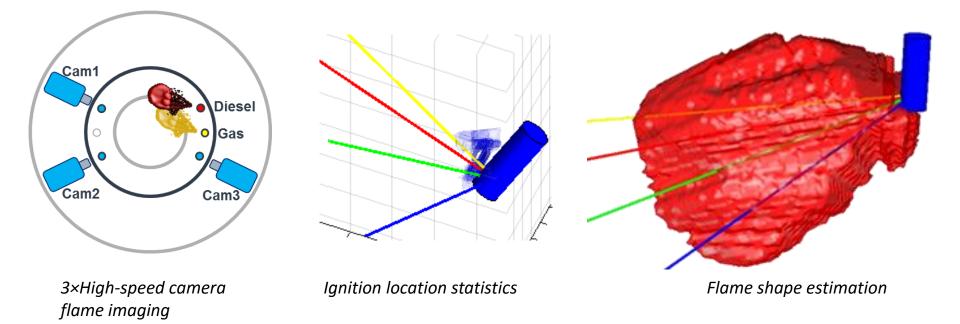
Objectives of Work Package

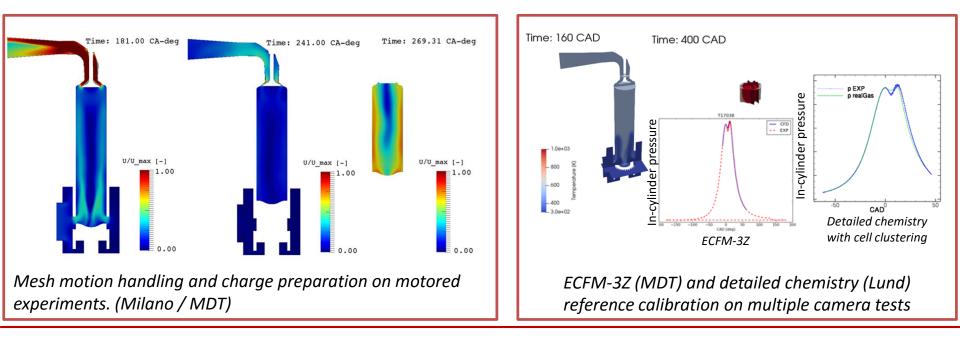
WP Leaders: Dr. Johan Hult Christian Kunkel

- Further improve fuel flexibility of marine engines
- Increase understanding of injection, ignition, combustion and emissions formation for novel and mixed fuels → efficient operation
- Develop experimental and numerical tools required to exploit alternative fuels in marine engines:
 - Experimental facilities with optical access
 - Development of numerical tools
 - Development of novel control strategies



October 2017

Progress M24-M30 (WP2.1 & WP2.2)


- Design of improved optical inserts for CPH test engine finished
- Preparations for next optical tests (MAN+LUND) in progress
- Data processing of tri-camera data for CFD validation

Progress M24-M30 (WP2.3)

- Validation of detailed chemical kinetic model for LPG (propane/butane)
- CFD is focusing on using detailed chemistry for LNG (from DTU). To boost progress new partner groups assist with:
 - Mesh motion handling for fast and robust CFD simulations (Milano)
 - Turbulence/chemistry interactions and cell clustering for detailed chemistry (Lund)
 - Charge preparation & tabulated chemistry (Milano)

Future Work

- Optical engine tests:
 - high-speed Schlieren/shadowgraph (MDT&Lund)
 - LPG (MDT)
 - *lubrication visualisation (MDT&Lund)*
- Data processing and CFD validation using Tri-camera data
 - will form CFD validation cases for partners (MDT&Lund)
- CFD:
 - further work on mesh handling for speedup (Milano)
 - use of detailed chemistry using cell clustering (Lund)
 - test of tabulated chemistry approach (Milano)

➔ finished

➔ finished

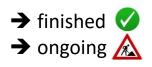
➔ finished

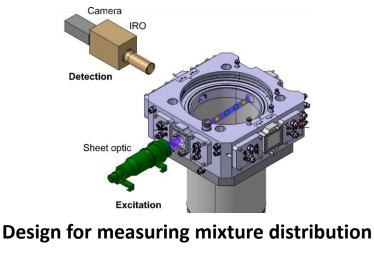
→ ongoing ▲

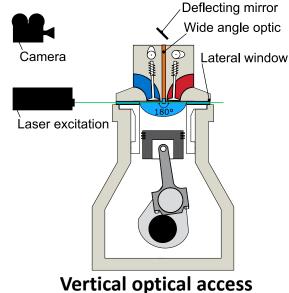
Progress update

2.4 In-cylinder mixture formation

lateral access:


- Tested up to 100%
- Investigation of flame luminescence


vertical access:

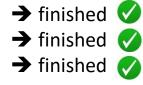

- Design and strength calculation
- Procurement and installation of parts → ongoing <u>A</u>
- 3D CFD mixture formation

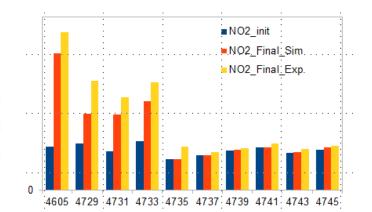
Tracer devices:

- Design and calculation
- Procurement and installation

October 2017

Progress update


2.5 Fuel-specific engine-control strategies


- Analyzation of base data (fuel1 and fuel2)
- Definition of strategy for adv. inj.-timing
- Validation strategy on full scale engine

2.6 Low temperature NO_x formation

- FTIR-measurements (diff. positions)
- Definition of appropriate kinetic mechanism
- Validation of model with engine data

Simulation (red) vs. experiment (yellow)

Future work

- Installation of 2nd optic release on the Single Cylinder Engine
- Initial Operation with 2nd optic release on Single Cylinder Engine
- Optical Investigations with 2nd optic release on Single Cylinder Engine
- Combination of 1st and 2nd optic release
- Further improvement of optical measurement techniques
- Installation of Tracer-Devices on test bench and engine tests
- Full Scale Engine tests with advanced injection timing with fuel 2
- Finalizing of report for NO/NO₂ model